A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos
نویسندگان
چکیده
Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.
منابع مشابه
Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network
We propose an online visual tracking algorithm by learning discriminative saliency map using Convolutional Neural Network (CNN). Given a CNN pre-trained on a large-scale image repository in offline, our algorithm takes outputs from hidden layers of the network as feature descriptors since they show excellent representation performance in various general visual recognition problems. The features...
متن کاملNon-rigid Object Tracking via Deep Multi-scale Spatial-Temporal Discriminative Saliency Maps
In this paper we propose an effective non-rigid object tracking method based on spatial-temporal consistent saliency detection. In contrast to most existing trackers that use a bounding box to specify the tracked target, the proposed method can extract the accurate regions of the target as tracking output, which achieves better description of the non-rigid objects while reduces background pollu...
متن کاملVisual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot
The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...
متن کاملLearning a time-dependent master saliency map from eye-tracking data in videos
To predict the most salient regions of complex natural scenes, saliency models commonly compute several feature maps (contrast, orientation, motion...) and linearly combine them into a master saliency map. Since feature maps have different spatial distribution and amplitude dynamic ranges, determining their contributions to overall saliency remains an open problem. Most state-of-the-art models ...
متن کاملIJSRD - International Journal for Scientific Research & Development| Vol. 5, Issue 02, 2017 | ISSN (online): 2321-0613
The spatio-temporal visual system is a computational approach to model the bottom-up visual saliency for HDR input by combining spatial and temporal visual features. The main advantage of this system is that it will reduce the cognitive processing efforts. Computational models of visual attention can be applied to areas such as computer graphics, video coding and quality assessment. The propose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2018